Laundry Powder Antibacterial

ACCO Brands Australia Pty Ltd

Version No: 1.4

Safety Data Sheet according to WHS and ADG requirements

Issue Date: 10/01/2018 Print Date: 07/03/2016 Initial Date: 10/02/2016

S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Laundry Powder Antibacterial
Synonyms	Not Available
Other means of identification	9KG - 636161500

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Laundry Detergent

Details of the supplier of the safety data sheet

Registered company name	ACCO Brands Australia Pty Ltd
Address	17-19 Waterloo Street, Queanbeyan 2620 NSW Australia
Telephone	+61-2-96740900
Fax	+61-2-96740910
Website	www.accobrands.com.au
Email	sds.anz@acco.com

Emergency telephone number

<u> </u>	
Association / Organisation	Poisons Information Line
Emergency telephone numbers	13 11 26
Other emergency telephone numbers	13 11 26

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification ^[1]	Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

GHS label elements

SIGNAL WORD

DANGER

Hazard statement(s)

H315	Causes skin irritation
H318	Causes serious eye damage
H335	May cause respiratory irritation
H402	Harmful to aquatic life

Precautionary statement(s) Prevention

• • • • • • • • • • • • • • • • • • • •	
P101	If medical advice is needed, have product container or label at hand.
P102	Keep out of reach of children.

Issue Date: 10/01/2018 Version No: 1.4 Page 2 of 12 Print Date: 07/03/2016

Laundry Powder Antibacterial

P103	Read label before use.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P261	Avoid breathing dust/fume/gas/mist/vapours/spray.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER or doctor/physician.
P362	Take off contaminated clothing and wash before reuse.
P302+P352	IF ON SKIN: Wash with plenty of soap and water.
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P332+P313	If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

`	
P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
497-19-8	30-60	sodium carbonate
13870-28-5	10-30	sodium disilicate
9000-11-7	<10	carboxymethylcellulose
93348-22-2	<10	fatty acids (C16-18), methyl esters, sulfonates, sodium salt
15630-89-4	10-30	sodium percarbonate
1318-02-1	<10	zeolites
7757-82-6	10-30	sodium sulfate
68131-39-5	<10	alcohols C12-15 ethoxylated
8001-54-5	<10	<u>benzalkonium chloride</u>

SECTION 4 FIRST AID MEASURES

D

Description of first aid measures		
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin)	
Skin Contact	 Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. 	

For second-degree burns (affecting top two layers of skin)

▶ Use compresses if running water is not available.

▶ Lay the person flat.

▶ Cool the burn by immerse in cold running water for 10-15 minutes.

▶ Do NOT apply ice as this may lower body temperature and cause further damage. ▶ Do NOT break blisters or apply butter or ointments; this may cause infection.

▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort):

Version No: **1.4** Page **3** of **12** Issue Date: **10/01/2018** Print Date: **07/03/2016**

Laundry Powder Antibacterial

 Elevate feet about 12 inches. Elevate burn area above heart level, if possible Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. ► To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up ▶ Check pulse and breathing to monitor for shock until emergency help arrives. ▶ If fumes or combustion products are inhaled remove from contaminated area. ▶ Lay patient down. Keep warm and rested Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary Transport to hospital, or doctor, without delay. ▶ Immediately give a glass of water. Ingestion First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure

INGESTION:

▶ Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

► Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

Hydrogen peroxide at moderate concentrations (5% or more) is a strong oxidant.

- Direct contact with the eye is likely to cause corneal damage especially if not washed immediately. Careful ophthalmologic evaluation is recommended and the possibility of local corticosteroid therapy should be considered.
- ▶ Because of the likelihood of systemic effects attempts at evacuating the stomach via emesis induction or gastric lavage should be avoided.
- Figure 1. There is remote possibility, however, that a nasogastric or orogastric tube may be required for the reduction of severe distension due to gas formation.

Fisher Scientific SDS

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ Water spray or fog.
- ► Foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
 - $\normalfont{\blacktriangleright}$ Wear breathing apparatus plus protective gloves.
 - ▶ Prevent, by any means available, spillage from entering drains or water courses.
 - Use water delivered as a fine spray to control fire and cool adjacent area.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- ▶ If safe to do so, remove containers from path of fire.
- ▶ Equipment should be thoroughly decontaminated after use

Fire/Explosion Hazard

Fire Fighting

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of

Version No: 1.4 Page 4 of 12 Issue Date: 10/01/2018

Laundry Powder Antibacterial

Print Date: 07/03/2016

- ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC).
- When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts.

Combustion products include; carbon monoxide (CO) carbon dioxide (CO2) sulfur oxides (SOx) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust. Minor Spills
 - Sweep up, shovel up or
 - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
 - ▶ Place spilled material in clean, dry, sealable, labelled container

Moderate hazard.

- ► CAUTION: Advise personnel in area.
- ▶ Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
 - Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- FIF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Major Spills

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.

When handling, DO NOT eat, drink or smoke

- Safe handling
 - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
 - ▶ Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
 - Establish good housekeeping practices.
 - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
 - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
 - Do not use air hoses for cleaning.

Store in original containers.

- Keep containers securely sealed
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities

- ► Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- ► DO NOT use aluminium or galvanised containers
- Polyethylene or polypropylene container
- ▶ Check all containers are clearly labelled and free from leaks

Hydrogen peroxide

- is a powerful oxidiser
- contamination or heat may cause self accelerating exothermic decomposition with oxygen gas and steam release this may generate dangerous pressures steam explosion.
- reacts dangerously with rust, dust, dirt, iron, copper, acids, metals and salts, organic material.

Storage incompatibility

- is unstable if heated. (e.g.); one volume of 70% hydrogen peroxide solution decomposes to produce 300 volumes of oxygen gas.
- in presence of a strong initiating source may be explosively reactive
- concentrated or pure material can generate heat and decompose spontaneously; can ignite or explode when heated, shocked, contaminated; or if placed in a basic (>7) environment, especially in the presence of metal ions
- mixtures with combustible materials may result in spontaneous combustion or may be impact- or heat- sensitive evaporation or drying on towels or mop may cause a fire.

Version No: **1.4** Page **5** of **12** Issue Date: **10/01/2018** Print Date: **07/03/2016**

Laundry Powder Antibacterial

- reacts violently with reducing agents, alcohols, ammonia, carboxylic acids, acetic acid, cobalt oxides, copper(II) chloride, ethers, metal powder, permanganates, acetone, benzenesulfonic anhydride, 1,1-dimethylhydrazine, dimethylphenylphosphine, gadolinium hydroxide, hydrogen selenide, iron oxides, lithium tetrahydroaluminate, magnesium tetrahydroaluminate, manganese(II) oxide, mercury oxide, methyl hydrazine, nickel monoxide, nitrogenous bases, osmium tetraoxide, alpha-phenylselenoketones, phosphorus, phosphorus(V) oxide, quinoline, tetrahydrothiophene, tin(II) chloride, thiodiglycol, thiophane, tin(II) chloride, unsaturated organic compounds, readily oxidisable and combustible materials; avoid contact with combustibles including lubricants and
- reacts with cobalt, copper and its alloys, chromium, iridium, iron, lead, manganese, Monel, osmium, palladium, platinum, gold, silver, zinc, and other catalytic metals, metal oxides and salts avoid metallic bowls and stirrers.
- violent catalytic decomposition will occur in contact with certain metals such as iron, copper, chromium, brass, bronze, lead, silver, manganese or their salts.
- forms unstable and possible explosive materials with acetic anhydride, aconitic acid, aniline, carboxylic acids, 1,4-diazabicyclo[2,2,2]octane, diphenyl diselenide, ethyl acetate, glycols, ketene, ketones, triethyltin hydroperoxide, 1,3,5-trioxane, vinyl acetate.

Sodium carbonate:

graphite

- aqueous solutions are strong bases
- reacts violently with finely divided aluminium, fluorine, lithium, phosphorus pentoxide, sulfuric acid
- reacts with fluorine gas at room temperature, generating incandescence.
- is incompatible with organic anhydrides, acrylates, alcohols, aldehydes, alkylene oxides, substituted allyls, cellulose nitrate, cresols, caprolactam solution, epichlorohydrin, ethylene dichloride, isocyanates, ketones, glycols, nitrates, phenols, phosphorus pentoxide 2,4,6-trinitrotoluene
- forms explosive material with 2,4,5-trinitrotoluene and increases the thermal sensitivity of 2,4,6-trinitrotoluene (TNT) by decreasing the temperature of explosion from 297 deg. C to 218 deg. C
- attacks metal.
- In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas.
- ▶ Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- ▶ Avoid contact with copper, aluminium and their alloys.
- ► Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
sodium carbonate	Sodium carbonate	12 mg/m3	130 mg/m3	780 mg/m3
carboxymethylcellulose	Carboxymethyl cellulose	31 mg/m3	340 mg/m3	2000 mg/m3
zeolites	Zeolites, NaA	0.061 mg/m3	0.67 mg/m3	4 mg/m3
zeolites	Zeolites, NaX	30 mg/m3	330 mg/m3	2000 mg/m3
sodium sulfate	Sodium sulfate, anhydrous	11 mg/m3	130 mg/m3	650 mg/m3
benzalkonium chloride	Alkyl dimethylbenzyl ammonium chloride; (Benzalkonium chloride)	4.7 mg/m3	48 mg/m3	48 mg/m3

Ingredient	Original IDLH	Revised IDLH
sodium carbonate	Not Available	Not Available
sodium disilicate	Not Available	Not Available
carboxymethylcellulose	Not Available	Not Available
fatty acids (C16-18), methyl esters, sulfonates, sodium salt	Not Available	Not Available
sodium percarbonate	Not Available	Not Available
zeolites	Not Available	Not Available
sodium sulfate	Not Available	Not Available
alcohols C12-15 ethoxylated	Not Available	Not Available
benzalkonium chloride	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

Personal protection

Appropriate engineering

controls

Eve and face protection

- Safety glasses with side shields.
 - Chemical goggles
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of

Version No: **1.4** Page **6** of **12** Issue Date: **10/01/2018** Print Date: **07/03/2016**

Laundry Powder Antibacterial

chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eve irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. Skin protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact. ▶ chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). ▶ When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes Hands/feet protection according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not ► polychloroprene. nitrile rubber. butyl rubber. fluorocaoutchouc ► polyvinyl chloride Gloves should be examined for wear and/ or degradation constantly. See Other protection below **Body protection** Overalls. ► P.V.C. apron. Other protection ▶ Barrier cream. Skin cleansing cream.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

Thermal hazards

The effect(s) of the following substance(s) are taken into account in the $\ computer-$ generated selection:

▶ Eye wash unit

Not Available

Laundry Powder Antibacterial

Material	СРІ
NATURAL RUBBER	A
NITRILE	А

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

· ·			
Appearance	A white powder		
	1		
Physical state	Solid	Relative density (Water = 1)	1.00
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

 Version No: 1.4
 Page 7 of 12
 Issue Date: 10/01/2018

 Print Date: 07/03/2016
 Print Date: 07/03/2016

Laundry Powder Antibacterial

	l		1
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	10-12
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

carboxymethylcellulose

Not Available

Inhaled	The material can cause respiratory irritation in some persons. The body's responsers with impaired respiratory function, airway diseases and conditions such concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney dindividuals who may be exposed to further risk if handling and use of the material in excessive exposures.	n as emphysema or chronic bronchitis, may incur further disability if excessive lamage has been sustained, proper screenings should be conducted on all result
	Inhalation of sodium carbonate may cause coughing, sore throat, difficulty breat over a long period of time.	thing. Fluid accumulation in the lungs can occur with exposure to high doses or
Ingestion	The material has NOT been classified by EC Directives or other classification s animal or human evidence.	systems as "harmful by ingestion". This is because of the lack of corroborating
Skin Contact	The material may cause mild but significant inflammation of the skin either follow contact dermatitis which is characterised by redness, swelling and blistering. Skin contact is not thought to have harmful health effects (as classified under Enthrough wounds, lesions or abrasions. Contact with concentrated solutions of sodium carbonate may cause tissue dam Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may of the material and ensure that any external damage is suitably protected.	C Directives); the material may still produce health damage following entry nage - "soda ulcers ♦.
Eye	If applied to the eyes, this material causes severe eye damage. 510sodacarb	
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways Substance accumulation, in the human body, may occur and may cause some or There has been some concern that this material can cause cancer or mutations Long term inhalation of sodium carbonate may result in nose damage and lung of All workers involved in the production and use of zeolite-containing products are deposits of other zeolites. Animal testing showed that injection of erionite through	oncern following repeated or long-term occupational exposure. but there is not enough data to make an assessment. disease. e potentially exposed to erionite, a fibrous form of zeolite, which is mined with
Laundry Powder	TOXICITY	IRRITATION

Laundry Powder	TOXICITY	IF	IRRITATION		
Antibacterial	Not Available	N	Not Available		
	TOXICITY		IRRITATION		
	dermal (rat) LD50: >2000 mg/kg*E ^[2]		Eye (rabbit): 100 m	g/24h moderate	
Power and another	Inhalation (guinea pig) LC50: 0.8 mg/L/2h ^[2] Eye (rabbit):		Eye (rabbit): 100 m	00 mg/30s mild	
sodium carbonate	Inhalation (mouse) LC50: 1.2 mg/L/2h ^[2]		Eye (rabbit): 50 mg	Eye (rabbit): 50 mg SEVERE	
	Inhalation (rat) LC50: 2.3 mg/L/2he ^[2]		Skin (rabbit): 500 m	ng/24h mild	
	Oral (rat) LD50: 2800 mg/kg*d ^[2]				
	TOXICITY			IRRITATION	
sodium disilicate	Oral (rat) LD50: 1153 mg/kgE ^[2]			Not Available	
	TOXICITY	IE	RRITATION		

Not Available

Version No: 1.4 Page 8 of 12 Issue Date: 10/01/2018
Print Date: 07/03/2016

Laundry Powder Antibacterial

	1		
fatty acids (C16-18), methyl esters, sulfonates, sodium	TOXICITY	IRRITATION	
esters, suitonates, sodium salt	Not Available Not Available		
	TOXICITY		IRRITATION
sodium percarbonate	Dermal (rabbit) LD50: >2000 mg/kg ^[1]		Nil reported
	Oral (rat) LD50: 893 mg/kg ^[1]		
	TOXICITY		IRRITATION
zeolites	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	
	Oral (rat) LD50: >5110 mg/kg ^[2]		
Para and fort	TOXICITY	IR	
sodium sulfate	Oral (rat) LD50: >2000 mg/kg ^[1] Nil		Nil reported
	TOXICITY	IRRITATION	
alcohols C12-15 ethoxylated	Dermal (rabbit) LD50: >2000 mg/kgt ^[2]	Eye: SEVERE *	
	Oral (rat) LD50: 1600 mg/kg** ^[2]	mg/kg** ^[2] Sk	
	TOXICITY	IRRITATION	
benzalkonium chloride	Dermal (rabbit) LD50: 1560 mg/kgE ^[2]	Eye (human): 0.05 mg	SEVERE
benzanomam emeriae	Oral (rat) LD50: 240 mg/kgd ^[2]	Eye (rabbit): 1mg/24h S	SEVERE
		Skin (human): 0.15 mg/	72h mild
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2. extracted from RTECS - Register of Toxic Effect of chemical Substances	* Value obtained from manufact	turer's SDS. Unless otherwise specified data
	extracted from KTECS - Register of Toxic Effect of chemical Substances		

Laundry Powder Antibacterial

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

for sodium carbonate:

Sodium carbonate has no or a low skin irritation potential but it is considered irritating to the eyes. Due to the alkaline properties an irritation of the respiratory tract is also possible.

No valid animal data are available on repeated dose toxicity studies by oral, dermal, inhalation or by other routes for sodium carbonate. A repeated dose inhalation study, which was not reported in sufficient detail, revealed local effects on the lungs which could be expected based on the alkaline nature of the compound. Under normal handling and use conditions neither the concentration of sodium in the blood nor the pH of the blood will be increased and therefore sodium carbonate is not expected to be systemically available in the body. It can be stated that the substance will neither reach the foetus nor reach male and female reproductive organs, which shows that there is no risk for developmental toxicity and no risk for toxicity to reproduction. This was confirmed by a developmental study with rabbits, rats and mice. An *in vitro* mutagenicity test with bacteria was negative and based on the structure of sodium carbonate no genotoxic effects are expected.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

SODIUM CARBONATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Sodium carbonate has no or a low skin irritation potential but it is considered irritating to the eyes. Due to the alkaline properties an irritation of the respiratory tract is also possible.

No valid animal data are available on repeated dose toxicity studies by oral, dermal, inhalation or by other routes for sodium carbonate. A repeated dose inhalation study, which was not reported in sufficient detail, revealed local effects on the lungs which could be expected based on the alkaline nature of the compound. Under normal handling and use conditions neither the concentration of sodium in the blood nor the pH of the blood will be increased and therefore sodium carbonate is not expected to be systemically available in the body. It can be stated that the substance will neither reach the foetus nor reach male and female reproductive organs, which shows that there is no risk for developmental toxicity and no risk for toxicity to reproduction. This was confirmed by a developmental study with rabbits, rats and mice. An *in vitro* mutagenicity test with bacteria was negative and based on the structure of sodium carbonate no genotoxic effects are expected.

Version No: 1.4 Page 9 of 12 Issue Date: 10/01/2018

Print Date: 07/03/2016 Laundry Powder Antibacterial The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration SODIUM DISILICATE of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. No significant acute toxicological data identified in literature search. SODIUM PERCARBONATE Sodium percarbonate is an inorganic, water soluble solid. It causes local irritation to mucous membranes, skin and eye. It is predicted to have genetic toxicity but may not cause cancer, reproductive, foetal, or developmental defects. However, there is insufficient data to substantiate this claim. ZEOLITES for sodium aluminosilicate, zeolite A: Skin (rabbit): non-irritating Eye (rabbit): slight [Grace] Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production SODIUM SULFATE for sodium sulfate Sulfate (and sodium) ions are important constituents of the mammalian body and of natural foodstuffs and there is a considerable daily turnover of both ions (several grams/day expressed as sodium sulfate). Near-complete absorption of dietary sulfates may occur at low concentration, depending on the counter-ion, but absorption capacity can be saturated at higher artificial dosages resulting in cathartic effects. Absorption through skin can probably be ignored since sodium sulfate is fully ionised in solution. One source suggests that very high levels of sulfate in urine may occur due to absorption from dust inhalation. At dietary levels, excretion is mainly in the urine. Sulfates are found in all body cells, with highest concentrations in connective tissues, bone and cartilage. Sulfates play a role in several important metabolic pathways, including those involved in detoxification proces The acute toxicity (LD50) of sodium sulfate has not been reliably established but is probably far in excess of 5000 mg/kg. Equivocal Tumorigen by RTECS criteria. Reproductive effector in mice. Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products . Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity. Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and ALCOHOLS C12-15 lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits **ETHOXYLATED** and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). Both laboratory and animal testing has shown that there is no evidence for alcohol ethoxylates (AEs) causing genetic damage, mutations or cancer. No adverse reproductive or developmental effects were observed. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. for Tergitol 25-L-9: Neodol 25-9 Neodol 25-7 *Shell Canada ** Huntsman (for Teric 12A9)

BENZALKONIUM CHLORIDE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Alkyldimethylbenzylammonium chlorides are in the list of dangerous substances of council directive, classified as "harmful in contact with skin and on ingestion", and "corrosive and very toxic to aquatic organisms". It can cause dose dependent skin and eye irritation with possible deterioration of vision, possible sensitisation in those with pre-existing eczema. It does not cause cancer, genetic defect, foetal or developmental abnormality.

CARBOXYMETHYLCELLULOSE & FATTY ACIDS (C16-18), METHYL ESTERS. SULFONATES, SODIUM SALT

No significant acute toxicological data identified in literature search.

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	0
Serious Eye Damage/Irritation	*	STOT - Single Exposure	0
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

X - Data available but does not fill the criteria for classification

Data required to make classification available

N - Data Not Available to make classification

Version No: 1.4 Page 10 of 12 Issue Date: 10/01/2018

Laundry Powder Antibacterial

Print Date: 07/03/2016

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
sodium carbonate	EC50	48	Crustacea	=176mg/L	1
sodium carbonate	EC50	96	Algae or other aquatic plants	242mg/L	4
sodium carbonate	NOEC	16	Crustacea	424mg/L	4
sodium carbonate	LC50	96	Fish	300mg/L	2
sodium carbonate	EC50	96	Crustacea	67mg/L	2
sodium disilicate	LC50	96	Fish	>500mg/L	2
sodium disilicate	EC50	48	Crustacea	491mg/L	2
sodium disilicate	NOEC	72	Algae or other aquatic plants	18mg/L	2
sodium percarbonate	EC50	48	Crustacea	=4.9mg/L	1
sodium percarbonate	EC50	48	Crustacea	4.9mg/L	2
sodium percarbonate	NOEC	48	Crustacea	2mg/L	2
zeolites	EC10	96	Algae or other aquatic plants	4.9mg/L	1
zeolites	LC50	96	Fish	>1000mg/L	1
zeolites	EC50	48	Crustacea	>100mg/L	2
zeolites	EC50	96	Algae or other aquatic plants	18mg/L	2
zeolites	NOEC	432	Algae or other aquatic plants	1mg/L	2
sodium sulfate	EC50	96	Algae or other aquatic plants	105.72278mg/L	3
sodium sulfate	NOEC	168	Fish	<220mg/L	4
sodium sulfate	EC0	360	Algae or other aquatic plants	4mg/L	1
sodium sulfate	LC50	96	Fish	ca.56mg/L	2
sodium sulfate	EC50	48	Crustacea	2564mg/L	2
alcohols C12-15 ethoxylated	LC50	96	Fish	0.59mg/L	2
alcohols C12-15 ethoxylated	EC50	48	Crustacea	0.13mg/L	2
alcohols C12-15 ethoxylated	EC50	48	Crustacea	0.14mg/L	2
alcohols C12-15 ethoxylated	NOEC	48	Crustacea	0.056mg/L	2
alcohols C12-15 ethoxylated	EC50	72	Algae or other aquatic plants	0.3mg/L	2
benzalkonium chloride	EC50	24	Algae or other aquatic plants	0.0013mg/L	4
benzalkonium chloride	EC50	48	Crustacea	0.018mg/L	4
benzalkonium chloride	EC50	96	Algae or other aquatic plants	0.056mg/L	4
benzalkonium chloride	LC50	96	Fish	0.32mg/L	4
benzalkonium chloride	NOEC	1	Algae or other aquatic plants	0.0025mg/L	4

Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms.

for sodium sulfate:

Environmental Fate: In water sodium sulfate completely dissociates into sodium and sulfate ions, which cannot hydrolyse. In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfide by sulfate reducing bacteria, or incorporated into living organisms as a source of sulfur, and thereby included in the sulfur cycle. Sodium sulfate will completely dissolve, ionise and distribute across the entire planetary "aquasphere". Some sulfates may eventually be deposited, the majority of sulfates participate in the sulfur cycle in which natural and industrial sodium sulfate are not distinguishable.

The BCF of sodium sulfate is very low and therefore significant bioconcentration is not expected. Sodium and sulfate ions are essential to all living organisms and their intracellular and extracellular concentrations are actively regulated. However some plants (e.g. corn and Kochia Scoparia), are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants.

Ecotoxicity: Algae were shown to be the most sensitive to sodium sulfate; EC50 120 h = 1,900 mg/l.

For sodium carbonate

Environmental Fate:

As sodium carbonate has the capacity to drastically increase the pH of an ecosystm, the extent of its effect on organisms depends on the buffer capacity of the aquatic or terrestrial ecosystem, and the pH tolerance levels of the organisms living there. While the use of sodium carbonate could potentially result in its release into aquatic systems and cause an increase in pH, these levels are usually monitored in effluents, and can easily be corrected. If corrective measures are taken to control the pH of waste water no significant increase in the receiving water or adverse environmental effects is not expected with the use of sodium carbonate. The sodium ion will remain in solution and not adsorb to particulate matter. In water the carbonate ions will re-equilibrate until equilibrium is established, and will finally be incorporated into the inorganic and organic carbon cycle.

Ecotoxicity:

Aquatic invertebrate EC50 (48 h): Cladoceran ceriodaphnia cf Dubia: 200-227 mg/l (immobilisation).

The variation in acute toxicity for aquatic organisms may be explained by the variation in buffer capacity of the test medium. In general, mortality of the test organisms was found at concentrations higher than 100 mg/l, but for Amphipoda, salmon and trout, lethal effects were observed at 67-80 mg/l.

For Surfactants: Kow cannot be easily determined due to hydrophilic/hydrophobic properties of the molecules in surfactants. BCF value: 1-350.

Aquatic Fate: Surfactants tend to accumulate at the interface of the air with water and are not extracted into one or the other liquid phases

Terrestrial Fate: Anionic surfactants are not appreciably sorbed by inorganic solids. Cationic surfactants are strongly sorbed by solids, particularly clays. Significant sorption of anionic and non-ionic surfactants has been observed in activated sludge and organic river sediments. Surfactants have been shown to improve water infiltration into soils with moderate to severe hydrophobic or water-repellent properties.

Ecotoxicity: Some surfactants are known to be toxic to animals, ecosystems and humans, and can increase the diffusion of other environmental contaminants.

DO NOT discharge into sewer or waterways

Version No: 1.4 Page 11 of 12 Issue Date: 10/01/2018
Print Date: 07/03/2016

Laundry Powder Antibacterial

Ingredient	Persistence: Water/Soil	Persistence: Air
sodium carbonate	LOW	LOW
sodium sulfate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
sodium carbonate	LOW (LogKOW = -0.4605)
sodium sulfate	LOW (LogKOW = -2.2002)

Mobility in soil

Ingredient	Mobility
sodium carbonate	HIGH (KOC = 1)
sodium sulfate	LOW (KOC = 6.124)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

SODIUM CARBONATE(497-19-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists

Australia Inventory of Chemical Substances (AICS)

SODIUM DISILICATE(13870-28-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

CARBOXYMETHYLCELLULOSE(9000-11-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

FATTY ACIDS (C16-18), METHYL ESTERS, SULFONATES, SODIUM SALT(93348-22-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

SODIUM PERCARBONATE(15630-89-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

ZEOLITES(1318-02-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

SODIUM SULFATE(7757-82-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

ALCOHOLS C12-15 ETHOXYLATED(68131-39-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists

Australia Inventory of Chemical Substances (AICS)

BENZALKONIUM CHLORIDE(8001-54-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

National Inventory Status

Version No: 1.4 Page 12 of 12 Issue Date: 10/01/2018
Print Date: 07/03/2016

Laundry Powder Antibacterial

Australia - AICS	N (fatty acids (C16-18), methyl esters, sulfonates, sodium salt)	
Canada - DSL	N (fatty acids (C16-18), methyl esters, sulfonates, sodium salt)	
Canada - NDSL	N (sodium disilicate; carboxymethylcellulose; fatty acids (C16-18), methyl esters, sulfonates, sodium salt; sodium sulfate; alcohols C12-15 ethoxylated; sodium percarbonate; sodium carbonate; benzalkonium chloride)	
China - IECSC	Υ	
Europe - EINEC / ELINCS / NLP	N (carboxymethylcellulose; benzalkonium chloride)	
Japan - ENCS	N (fatty acids (C16-18), methyl esters, sulfonates, sodium salt; alcohols C12-15 ethoxylated; benzalkonium chloride)	
Korea - KECI	N (fatty acids (C16-18), methyl esters, sulfonates, sodium salt)	
New Zealand - NZIoC	Υ	
Philippines - PICCS	N (fatty acids (C16-18), methyl esters, sulfonates, sodium salt)	
USA - TSCA	N (fatty acids (C16-18), methyl esters, sulfonates, sodium salt; benzalkonium chloride)	
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No	
sodium carbonate	497-19-8, 7542-12-3	
sodium percarbonate	15630-89-4, 4452-58-8	
zeolites	12173-10-3, 12173-98-7, 12174-18-4, 12271-42-0, 12321-85-6, 12445-20-4, 1318-02-1, 37305-72-9, 50809-51-3, 52349-29-8, 53025-48-2, 53060-43-8, 53569-61-2, 53789-62-1, 54693-40-2, 54824-24-7, 56747-83-2, 61027-84-7, 61710-45-0, 66732-10-3, 66733-09-3, 67239-95-6, 67240-23-7, 68652-75-5, 68989-22-0, 68989-23-1, 75216-11-4, 76774-74-8, 79982-98-2, 85117-23-3, 92623-86-4	

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.